|
|
|
@ -156,33 +156,65 @@ var PDFFunction = (function PDFFunctionClosure() {
@@ -156,33 +156,65 @@ var PDFFunction = (function PDFFunctionClosure() {
|
|
|
|
|
args.length); |
|
|
|
|
|
|
|
|
|
var x = args; |
|
|
|
|
var y = new Float64Array(n * m); |
|
|
|
|
|
|
|
|
|
// Building the cube vertices: its part and sample index
|
|
|
|
|
// http://rjwagner49.com/Mathematics/Interpolation.pdf
|
|
|
|
|
var cubeVertices = 1 << m; |
|
|
|
|
var cubeN = new Float64Array(cubeVertices); |
|
|
|
|
var cubeVertex = new Uint32Array(cubeVertices); |
|
|
|
|
for (var j = 0; j < cubeVertices; j++) |
|
|
|
|
cubeN[j] = 1; |
|
|
|
|
|
|
|
|
|
var k = n, pos = 1; |
|
|
|
|
// Map x_i to y_j for 0 <= i < m using the sampled function.
|
|
|
|
|
for (var i = 0; i < m; ++i) { |
|
|
|
|
// x_i' = min(max(x_i, Domain_2i), Domain_2i+1)
|
|
|
|
|
var domain_2i = domain[2 * i]; |
|
|
|
|
var domain_2i_1 = domain[2 * i + 1]; |
|
|
|
|
var domain_2i = domain[i][0]; |
|
|
|
|
var domain_2i_1 = domain[i][1]; |
|
|
|
|
var xi = Math.min(Math.max(x[i], domain_2i), domain_2i_1); |
|
|
|
|
|
|
|
|
|
// e_i = Interpolate(x_i', Domain_2i, Domain_2i+1, Encode_2i, Encode_2i+1)
|
|
|
|
|
var e = interpolate(xi, domain_2i, domain_2i_1, encode[2 * i], encode[2 * i + 1]); |
|
|
|
|
// e_i = Interpolate(x_i', Domain_2i, Domain_2i+1,
|
|
|
|
|
// Encode_2i, Encode_2i+1)
|
|
|
|
|
var e = interpolate(xi, domain_2i, domain_2i_1, |
|
|
|
|
encode[i][0], encode[i][1]); |
|
|
|
|
|
|
|
|
|
// e_i' = min(max(e_i, 0), Size_i - 1)
|
|
|
|
|
e = Math.min(Math.max(e, 0), size[i] - 1); |
|
|
|
|
var size_i = size[i]; |
|
|
|
|
e = Math.min(Math.max(e, 0), size_i - 1); |
|
|
|
|
|
|
|
|
|
// Adjusting the cube: N and vertex sample index
|
|
|
|
|
var e0 = e < size_i - 1 ? Math.floor(e) : e - 1; // e1 = e0 + 1;
|
|
|
|
|
var n0 = e0 + 1 - e; // (e1 - e) / (e1 - e0);
|
|
|
|
|
var n1 = e - e0; // (e - e0) / (e1 - e0);
|
|
|
|
|
var offset0 = e0 * k; |
|
|
|
|
var offset1 = offset0 + k; // e1 * k
|
|
|
|
|
for (var j = 0; j < cubeVertices; j++) { |
|
|
|
|
if (j & pos) { |
|
|
|
|
cubeN[j] *= n1; |
|
|
|
|
cubeVertex[j] += offset1; |
|
|
|
|
} else { |
|
|
|
|
cubeN[j] *= n0; |
|
|
|
|
cubeVertex[j] += offset0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
var in = i * n; |
|
|
|
|
k *= size_i; |
|
|
|
|
pos <<= 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (var j = 0; j < n; ++j) { |
|
|
|
|
// average the two nearest neighbors in the sampling table
|
|
|
|
|
var rj = (samples[Math.floor(e) * n + j] + samples[Math.ceil(e) * n + j]) / 2; |
|
|
|
|
var y = new Float64Array(n); |
|
|
|
|
for (var j = 0; j < n; ++j) { |
|
|
|
|
// Sum all cube vertices' samples portions
|
|
|
|
|
var rj = 0; |
|
|
|
|
for (var i = 0; i < cubeVertices; i++) |
|
|
|
|
rj += samples[cubeVertex[i] + j] * cubeN[i]; |
|
|
|
|
|
|
|
|
|
// r_j' = Interpolate(r_j, 0, 2^BitsPerSample - 1, Decode_2j, Decode_2j+1)
|
|
|
|
|
rj = interpolate(rj, 0, mask, 1, decode[2 * j], decode[2 * j + 1]); |
|
|
|
|
// r_j' = Interpolate(r_j, 0, 2^BitsPerSample - 1,
|
|
|
|
|
// Decode_2j, Decode_2j+1)
|
|
|
|
|
rj = interpolate(rj, 0, 1, decode[j][0], decode[j][1]); |
|
|
|
|
|
|
|
|
|
// y_j = min(max(r_j, range_2j, range_2j+1)
|
|
|
|
|
y[in + j] = Math.min(Math.max(rj, range[2 * j], range[2 * j + 1])); |
|
|
|
|
} |
|
|
|
|
// y_j = min(max(r_j, range_2j), range_2j+1)
|
|
|
|
|
y[j] = Math.min(Math.max(rj, range[j][0]), range[j][1]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return y; |
|
|
|
|