You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1028 lines
30 KiB
1028 lines
30 KiB
|
|
/* |
|
* This dictionary hold the decoded fonts |
|
*/ |
|
var Fonts = new Dict(); |
|
|
|
|
|
var Base64Encoder = { |
|
encode: function(aData) { |
|
var str = []; |
|
var count = aData.length; |
|
for (var i = 0; i < count; i++) |
|
str.push(aData.getChar()); |
|
|
|
return window.btoa(str.join("")); |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
var TrueTypeFont = function(aFontName, aFontFile) { |
|
if (Fonts.get(aFontName)) |
|
return; |
|
|
|
//log("Loading a TrueType font: " + aFontName); |
|
var fontData = Base64Encoder.encode(aFontFile); |
|
Fonts.set(aFontName, fontData); |
|
|
|
// Add the css rule |
|
var url = "url(data:font/ttf;base64," + fontData + ");"; |
|
document.styleSheets[0].insertRule("@font-face { font-family: '" + aFontName + "'; src: " + url + " }", 0); |
|
}; |
|
|
|
|
|
|
|
|
|
var Type1Parser = function(aAsciiStream, aBinaryStream) { |
|
var lexer = new Lexer(aAsciiStream); |
|
|
|
// Turn on this flag for additional debugging logs |
|
var debug = false; |
|
|
|
var dump = function(aData) { |
|
if (debug) |
|
log(aData); |
|
}; |
|
|
|
/* |
|
* Parse a whole Type1 font stream (from the first segment to the last) |
|
* assuming the 'eexec' block is binary data and fill up the 'Fonts' |
|
* dictionary with the font informations. |
|
*/ |
|
var self = this; |
|
this.parse = function() { |
|
if (!debug) { |
|
while (!processNextToken()) {}; |
|
} else { |
|
// debug mode is used to debug postcript processing |
|
setTimeout(function() { |
|
if (!processNextToken()) |
|
self.parse(); |
|
}, 0); |
|
} |
|
} |
|
|
|
/* |
|
* Decrypt a Sequence of Ciphertext Bytes to Produce the Original Sequence |
|
* of Plaintext Bytes. The function took a key as a parameter which can be |
|
* for decrypting the eexec block of for decoding charStrings. |
|
*/ |
|
var kEexecEncryptionKey = 55665; |
|
var kCharStringsEncryptionKey = 4330; |
|
|
|
function decrypt(aStream, aKey, aDiscardNumber) { |
|
var start = Date.now(); |
|
var r = aKey, c1 = 52845, c2 = 22719; |
|
var decryptedString = []; |
|
|
|
var value = ""; |
|
var count = aStream.length; |
|
for (var i = 0; i < count; i++) { |
|
value = aStream.getByte(); |
|
decryptedString[i] = String.fromCharCode(value ^ (r >> 8)); |
|
r = ((value + r) * c1 + c2) & ((1 << 16) - 1); |
|
} |
|
var end = Date.now(); |
|
dump("Time to decrypt string of length " + count + " is " + (end - start)); |
|
return decryptedString.slice(aDiscardNumber); |
|
} |
|
|
|
/* |
|
* CharStrings are encoded following the the CharString Encoding sequence |
|
* describe in Chapter 6 of the "Adobe Type1 Font Format" specification. |
|
* The value in a byte indicates a command, a number, or subsequent bytes |
|
* that are to be interpreted in a special way. |
|
* |
|
* CharString Number Encoding: |
|
* A CharString byte containing the values from 32 through 255 inclusive |
|
* indicate an integer. These values are decoded in four ranges. |
|
* |
|
* 1. A CharString byte containing a value, v, between 32 and 246 inclusive, |
|
* indicate the integer v - 139. Thus, the integer values from -107 through |
|
* 107 inclusive may be encoded in single byte. |
|
* |
|
* 2. A CharString byte containing a value, v, between 247 and 250 inclusive, |
|
* indicates an integer involving the next byte, w, according to the formula: |
|
* [(v - 247) x 256] + w + 108 |
|
* |
|
* 3. A CharString byte containing a value, v, between 251 and 254 inclusive, |
|
* indicates an integer involving the next byte, w, according to the formula: |
|
* -[(v - 251) * 256] - w - 108 |
|
* |
|
* 4. A CharString containing the value 255 indicates that the next 4 bytes |
|
* are a two complement signed integer. The first of these bytes contains the |
|
* highest order bits, the second byte contains the next higher order bits |
|
* and the fourth byte contain the lowest order bits. |
|
* |
|
* |
|
* CharString Command Encoding: |
|
* CharStrings commands are encoded in 1 or 2 bytes. |
|
* |
|
* Single byte commands are encoded in 1 byte that contains a value between |
|
* 0 and 31 inclusive. |
|
* If a command byte contains the value 12, then the value in the next byte |
|
* indicates a command. This "escape" mechanism allows many extra commands |
|
* to be encoded and this encoding technique helps to minimize the length of |
|
* the charStrings. |
|
*/ |
|
var charStringDictionary = { |
|
"1": "hstem", |
|
"3": "vstem", |
|
"4": "vmoveto", |
|
"5": "rlineto", |
|
"6": "hlineto", |
|
"7": "vlineto", |
|
"8": "rrcurveto", |
|
"9": "closepath", |
|
"10": "callsubr", |
|
"11": "return", |
|
"12": { |
|
"0": "dotsection", |
|
"1": "vstem3", |
|
"3": "hstem3", |
|
"6": "seac", |
|
"7": "sbw", |
|
"12": "div", |
|
"16": "callothersubr", |
|
"17": "pop", |
|
"33": "setcurrentpoint" |
|
}, |
|
"13": "hsbw", |
|
"14": "endchar", |
|
"21": "rmoveto", |
|
"22": "hmoveto", |
|
"30": "vhcurveto", |
|
"31": "hcurveto" |
|
}; |
|
|
|
// XXX Is count++ the right thing to do? Is it not i++? |
|
function decodeCharString(aStream) { |
|
var start = Date.now(); |
|
var charString = []; |
|
|
|
var value = ""; |
|
var count = aStream.length; |
|
for (var i = 0; i < count; i++) { |
|
value = aStream.getByte(); |
|
|
|
if (value < 0) { |
|
continue; |
|
} else if (value < 32) { |
|
if (value == 12) { |
|
value = charStringDictionary["12"][aStream.getByte()]; |
|
count++; |
|
} else { |
|
value = charStringDictionary[value]; |
|
} |
|
} else if (value <= 246) { |
|
value = parseInt(value) - 139; |
|
} else if (value <= 250) { |
|
value = ((value - 247) * 256) + parseInt(aStream.getByte()) + 108; |
|
count++; |
|
} else if (value <= 254) { |
|
value = -((value - 251) * 256) - parseInt(aStream.getByte()) - 108; |
|
count++; |
|
} else { |
|
var byte = aStream.getByte(); |
|
var high = (byte >> 1); |
|
value = (byte - high) << 24 | aStream.getByte() << 16 | |
|
aStream.getByte() << 8 | aStream.getByte(); |
|
count += 4; |
|
} |
|
|
|
charString.push(value); |
|
} |
|
|
|
var end = Date.now(); |
|
dump("Time to decode charString of length " + count + " is " + (end - start)); |
|
return charString; |
|
} |
|
|
|
/* |
|
* The operand stack holds arbitrary PostScript objects that are the operands |
|
* and results of PostScript operators being executed. The interpreter pushes |
|
* objects on the operand stack when it encounters them as literal data in a |
|
* program being executed. When an operator requires one or more operands, it |
|
* obtains them by popping them off the top of the operand stack. When an |
|
* operator returns one or more results, it does so by pushing them on the |
|
* operand stack. |
|
*/ |
|
var operandStack = { |
|
__innerStack__: [], |
|
|
|
push: function(aOperand) { |
|
this.__innerStack__.push(aOperand); |
|
}, |
|
|
|
pop: function() { |
|
if (!this.length) |
|
throw new Error("stackunderflow"); |
|
return this.__innerStack__.pop(); |
|
}, |
|
|
|
peek: function() { |
|
if (!this.length) |
|
return null; |
|
return this.__innerStack__[this.__innerStack__.length - 1]; |
|
}, |
|
|
|
dump: function() { |
|
log("=== Start Dumping operandStack ==="); |
|
var str = []; |
|
for (var i = 0; i < this.length; i++) |
|
log(this.__innerStack__[i]); |
|
log("=== End Dumping operandStack ==="); |
|
}, |
|
|
|
get length() { |
|
return this.__innerStack__.length; |
|
} |
|
}; |
|
|
|
// Flag indicating if the topmost operand of the operandStack is an array |
|
var operandIsArray = 0; |
|
|
|
/* |
|
* The dictionary stack holds only dictionary objects. The current set of |
|
* dictionaries on the dictionary stack defines the environment for all |
|
* implicit name searches, such as those that occur when the interpreter |
|
* encounters an executable name. The role of the dictionary stack is |
|
* introduced in Section 3.3, “Data Types and Objects,” and is further |
|
* explained in Section 3.5, “Execution.” of the PostScript Language |
|
* Reference. |
|
*/ |
|
var systemDict = new Dict(), |
|
globalDict = new Dict(), |
|
userDict = new Dict(); |
|
|
|
var dictionaryStack = { |
|
__innerStack__: [systemDict, globalDict, userDict], |
|
|
|
push: function(aDictionary) { |
|
this.__innerStack__.push(aDictionary); |
|
}, |
|
|
|
pop: function() { |
|
if (this.__innerStack__.length == 3) |
|
return null; |
|
|
|
return this.__innerStack__.pop(); |
|
}, |
|
|
|
peek: function() { |
|
if (!this.length) |
|
return null; |
|
return this.__innerStack__[this.__innerStack__.length - 1]; |
|
}, |
|
|
|
get: function(aIndex) { |
|
return this.__innerStack__[aIndex]; |
|
}, |
|
|
|
get length() { |
|
return this.__innerStack__.length; |
|
}, |
|
|
|
dump: function() { |
|
log("=== Start Dumping dictionaryStack ==="); |
|
var str = []; |
|
for (var i = 0; i < this.length; i++) |
|
log(this.__innerStack__[i]); |
|
log("=== End Dumping dictionaryStack ==="); |
|
}, |
|
}; |
|
|
|
/* |
|
* The execution stack holds executable objects (mainly procedures and files) |
|
* that are in intermediate stages of execution. At any point in the |
|
* execution of a PostScript program, this stack represents the program’s |
|
* call stack. Whenever the interpreter suspends execution of an object to |
|
* execute some other object, it pushes the new object on the execution |
|
* stack. When the interpreter finishes executing an object, it pops that |
|
* object off the execution stack and resumes executing the suspended object |
|
* beneath it. |
|
*/ |
|
var executionStack = { |
|
__innerStack__: [], |
|
|
|
push: function(aProcedure) { |
|
this.__innerStack__.push(aProcedure); |
|
}, |
|
|
|
pop: function() { |
|
return this.__innerStack__.pop(); |
|
}, |
|
|
|
peek: function() { |
|
if (!this.length) |
|
return null; |
|
return this.__innerStack__[this.__innerStack__.length - 1]; |
|
}, |
|
|
|
get: function(aIndex) { |
|
return this.__innerStack__[aIndex]; |
|
}, |
|
|
|
get length() { |
|
return this.__innerStack__.length; |
|
} |
|
}; |
|
|
|
/* |
|
* Return the next token in the execution stack |
|
*/ |
|
function nextInStack() { |
|
var currentProcedure = executionStack.peek(); |
|
if (currentProcedure) { |
|
var command = currentProcedure.shift(); |
|
if (!currentProcedure.length) |
|
executionStack.pop(); |
|
return command; |
|
} |
|
|
|
return lexer.getObj(); |
|
}; |
|
|
|
|
|
/* |
|
* Get the next token from the executionStack and process it. |
|
* Actually the function does not process the third segment of a Type1 font |
|
* and end on 'closefile'. |
|
* |
|
* The method thrown an error if it encounters an unknown token. |
|
*/ |
|
function processNextToken() { |
|
var obj = nextInStack(); |
|
if (operandIsArray && !IsCmd(obj, "{") && !IsCmd(obj, "[") && |
|
!IsCmd(obj, "]") && !IsCmd(obj, "}")) { |
|
dump("Adding an object: " + obj +" to array " + operandIsArray); |
|
var currentArray = operandStack.peek(); |
|
for (var i = 1; i < operandIsArray; i++) |
|
currentArray = currentArray[currentArray.length - 1]; |
|
|
|
currentArray.push(obj); |
|
} else if (IsBool(obj) || IsInt(obj) || IsNum(obj) || IsString(obj)) { |
|
dump("Value: " + obj); |
|
operandStack.push(obj); |
|
} else if (IsName(obj)) { |
|
dump("Name: " + obj.name); |
|
operandStack.push(obj.name); |
|
} else if (IsCmd(obj)) { |
|
var command = obj.cmd; |
|
dump(command); |
|
|
|
switch (command) { |
|
case "[": |
|
case "{": |
|
dump("Start" + (command == "{" ? " Executable " : " ") + "Array"); |
|
operandIsArray++; |
|
var currentArray = operandStack; |
|
for (var i = 1; i < operandIsArray; i++) |
|
if (currentArray.peek) |
|
currentArray = currentArray.peek(); |
|
else |
|
currentArray = currentArray[currentArray.length - 1]; |
|
currentArray.push([]); |
|
break; |
|
|
|
case "]": |
|
case "}": |
|
var currentArray = operandStack.peek(); |
|
for (var i = 1; i < operandIsArray; i++) |
|
currentArray = currentArray[currentArray.length - 1]; |
|
dump("End" + (command == "}" ? " Executable " : " ") + "Array: " + currentArray.join(" ")); |
|
operandIsArray--; |
|
break; |
|
|
|
case "if": |
|
var procedure = operandStack.pop(); |
|
var bool = operandStack.pop(); |
|
if (!IsBool(bool)) { |
|
dump("if: " + bool); |
|
// we need to execute things, let be dirty |
|
executionStack.push(bool); |
|
} else { |
|
dump("if ( " + bool + " ) { " + procedure + " }"); |
|
if (bool) |
|
executionStack.push(procedure); |
|
} |
|
break; |
|
|
|
case "ifelse": |
|
var procedure1 = operandStack.pop(); |
|
var procedure2 = operandStack.pop(); |
|
var bool = !!operandStack.pop(); |
|
dump("if ( " + bool + " ) { " + procedure2 + " } else { " + procedure1 + " }"); |
|
executionStack.push(bool ? procedure2 : procedure1); |
|
break; |
|
|
|
case "for": |
|
var procedure = operandStack.pop(); |
|
var limit = operandStack.pop(); |
|
var increment = operandStack.pop(); |
|
var initial = operandStack.pop(); |
|
for (var i = 0; i < limit; i += increment) { |
|
operandStack.push(i); |
|
executionStack.push(procedure.slice()); |
|
} |
|
break; |
|
|
|
case "dup": |
|
dump("duplicate: " + operandStack.peek()); |
|
operandStack.push(operandStack.peek()); |
|
break; |
|
|
|
case "mark": |
|
operandStack.push("mark"); |
|
break; |
|
|
|
case "cleartomark": |
|
var command = ""; |
|
do { |
|
command = operandStack.pop(); |
|
} while (command != "mark"); |
|
break; |
|
|
|
case "put": |
|
var data = operandStack.pop(); |
|
var indexOrKey = operandStack.pop(); |
|
var object = operandStack.pop(); |
|
dump("put " + data + " in " + object + "[" + indexOrKey + "]"); |
|
object.set ? object.set(indexOrKey, data) |
|
: object[indexOrKey] = data; |
|
break; |
|
|
|
case "pop": |
|
operandStack.pop(); |
|
break; |
|
|
|
case "exch": |
|
var operand1 = operandStack.pop(); |
|
var operand2 = operandStack.pop(); |
|
operandStack.push(operand1); |
|
operandStack.push(operand2); |
|
break; |
|
|
|
case "get": |
|
var indexOrKey = operandStack.pop(); |
|
var object = operandStack.pop(); |
|
var data = object.get ? object.get(indexOrKey) : object[indexOrKey]; |
|
dump("get " + object + "[" + indexOrKey + "]: " + data); |
|
operandStack.push(data); |
|
break; |
|
|
|
case "currentdict": |
|
var dict = dictionaryStack.peek(); |
|
operandStack.push(dict); |
|
break; |
|
|
|
case "systemdict": |
|
operandStack.push(systemDict); |
|
break; |
|
|
|
case "readonly": |
|
case "executeonly": |
|
case "noaccess": |
|
// Do nothing for the moment |
|
break; |
|
|
|
case "currentfile": |
|
operandStack.push("currentfile"); |
|
break; |
|
|
|
case "array": |
|
var size = operandStack.pop(); |
|
var array = new Array(size); |
|
operandStack.push(array); |
|
break; |
|
|
|
case "dict": |
|
var size = operandStack.pop(); |
|
var dict = new Dict(size); |
|
operandStack.push(dict); |
|
break; |
|
|
|
case "begin": |
|
dictionaryStack.push(operandStack.pop()); |
|
break; |
|
|
|
case "end": |
|
dictionaryStack.pop(); |
|
break; |
|
|
|
case "def": |
|
var value = operandStack.pop(); |
|
var key = operandStack.pop(); |
|
|
|
// XXX we don't want to do that here but for some reasons the names |
|
// are different between what is declared and the FontName directive |
|
if (key == "FontName" && Fonts.get(value)) { |
|
// The font has already be decoded, stop! |
|
return true; |
|
} |
|
|
|
dump("def: " + key + " = " + value); |
|
dictionaryStack.peek().set(key, value); |
|
break; |
|
|
|
case "definefont": |
|
var font = operandStack.pop(); |
|
var key = operandStack.pop(); |
|
dump("definefont " + font + " with key: " + key); |
|
Fonts.set(key, font); |
|
operandStack.push(font); |
|
break; |
|
|
|
case "known": |
|
var name = operandStack.pop(); |
|
var dict = operandStack.pop(); |
|
var data = !!dict.get(name); |
|
dump("known: " + data + " :: " + name + " in dict: " + dict); |
|
operandStack.push(data); |
|
break; |
|
|
|
case "exec": |
|
executionStack.push(operandStack.pop()); |
|
break; |
|
|
|
case "eexec": |
|
// All the first segment data has been read, decrypt the second segment |
|
// and start interpreting it in order to decode it |
|
var file = operandStack.pop(); |
|
var eexecString = decrypt(aBinaryStream, kEexecEncryptionKey, 4).join(""); |
|
dump(eexecString); |
|
lexer = new Lexer(new StringStream(eexecString)); |
|
break; |
|
|
|
case "LenIV": |
|
error("LenIV: argh! we need to modify the length of discard characters for charStrings"); |
|
break; |
|
|
|
case "closefile": |
|
var file = operandStack.pop(); |
|
return true; |
|
break; |
|
|
|
case "index": |
|
var operands = []; |
|
var size = operandStack.pop(); |
|
for (var i = 0; i < size; i++) |
|
operands.push(operandStack.pop()); |
|
|
|
var newOperand = operandStack.peek(); |
|
|
|
while (operands.length) |
|
operandStack.push(operands.pop()); |
|
|
|
operandStack.push(newOperand); |
|
break; |
|
|
|
case "string": |
|
var size = operandStack.pop(); |
|
var str = (new Array(size + 1)).join(" "); |
|
operandStack.push(str); |
|
break; |
|
|
|
case "readstring": |
|
var str = operandStack.pop(); |
|
var size = str.length; |
|
|
|
var file = operandStack.pop(); |
|
|
|
// Add '1' because of the space separator, this is dirty |
|
var stream = lexer.stream.makeSubStream(lexer.stream.pos + 1, size); |
|
lexer.stream.skip(size + 1); |
|
|
|
var charString = decrypt(stream, kCharStringsEncryptionKey, 4).join(""); |
|
var charStream = new StringStream(charString); |
|
var decodedCharString = decodeCharString(charStream); |
|
dump("decodedCharString: " + decodedCharString); |
|
operandStack.push(decodedCharString); |
|
// boolean indicating if the operation is a success or not |
|
operandStack.push(true); |
|
break; |
|
|
|
case "StandardEncoding": |
|
// For some reason the value is considered as a command, maybe it is |
|
// because of the uppercase 'S' |
|
operandStack.push(obj.cmd); |
|
break; |
|
|
|
default: |
|
var command = null; |
|
if (IsCmd(obj)) { |
|
for (var i = 0; i < dictionaryStack.length; i++) { |
|
if (command = dictionaryStack.get(i).get(obj.cmd)) { |
|
dump("found in dictionnary for " + obj.cmd + " command: " + command); |
|
executionStack.push(command.slice()); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (!command) { |
|
log("operandStack: " + operandStack); |
|
log("dictionaryStack: " + dictionaryStack); |
|
log(obj); |
|
error("Unknow command while parsing font"); |
|
} |
|
break; |
|
} |
|
} else if (obj){ |
|
dump("unknow: " + obj); |
|
operandStack.push(obj); |
|
} |
|
|
|
return false; |
|
} |
|
}; |
|
|
|
|
|
var type1hack = false; |
|
var Type1Font = function(aFontName, aFontFile) { |
|
// All Type1 font program should begin with the comment %! |
|
if (aFontFile.getByte() != 0x25 || aFontFile.getByte() != 0x21) |
|
error("Invalid file header"); |
|
|
|
if (!type1hack) { |
|
type1hack= true; |
|
var start = Date.now(); |
|
|
|
var ASCIIStream = aFontFile.makeSubStream(0, aFontFile.dict.get("Length1"), aFontFile.dict); |
|
var binaryStream = aFontFile.makeSubStream(aFontFile.dict.get("Length1"), aFontFile.dict.get("Length2"), aFontFile.dict); |
|
|
|
this.parser = new Type1Parser(ASCIIStream, binaryStream); |
|
this.parser.parse(); |
|
|
|
var end = Date.now(); |
|
//log("Time to parse font is:" + (end - start)); |
|
|
|
this.convert(); |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/** |
|
* The Type2 reader code below is only used for debugging purpose since Type2 |
|
* is only a CharString format and is never used directly as a Font file. |
|
* |
|
* So the code here is useful for dumping the data content of a .cff file in |
|
* order to investigate the similarity between a Type1 CharString and a Type2 |
|
* CharString. |
|
*/ |
|
|
|
|
|
/** |
|
* Build a charset by assigning the glyph name and the human readable form |
|
* of the glyph data. |
|
*/ |
|
function readCharset(aStream, aCharstrings) { |
|
var charset = {}; |
|
|
|
var format = aStream.getByte(); |
|
if (format == 0) { |
|
charset[".notdef"] = readCharstringEncoding(aCharstrings[0]); |
|
|
|
var count = aCharstrings.length - 1; |
|
for (var i = 1; i < count + 1; i++) { |
|
var sid = aStream.getByte() << 8 | aStream.getByte(); |
|
charset[CFFStrings[sid]] = readCharstringEncoding(aCharstrings[i]); |
|
log(CFFStrings[sid] + "::" + charset[CFFStrings[sid]]); |
|
} |
|
} else if (format == 1) { |
|
error("Charset Range are not supported"); |
|
} else { |
|
error("Invalid charset format"); |
|
} |
|
|
|
return charset; |
|
}; |
|
|
|
/** |
|
* Take a Type2 binary charstring as input and transform it to a human |
|
* readable representation as specified by the 'The Type 2 Charstring Format', |
|
* chapter 3.1. |
|
*/ |
|
function readCharstringEncoding(aString) { |
|
var charstringTokens = []; |
|
|
|
var count = aString.length; |
|
for (var i = 0; i < count; ) { |
|
var value = aString[i++]; |
|
var token = null; |
|
|
|
if (value < 0) { |
|
continue; |
|
} else if (value <= 11) { |
|
token = CFFEncodingMap[value]; |
|
} else if (value == 12) { |
|
token = CFFEncodingMap[value][aString[i++]]; |
|
} else if (value <= 18) { |
|
token = CFFEncodingMap[value]; |
|
} else if (value <= 20) { |
|
var mask = aString[i++]; |
|
token = CFFEncodingMap[value]; |
|
} else if (value <= 27) { |
|
token = CFFEncodingMap[value]; |
|
} else if (value == 28) { |
|
token = aString[i++] << 8 | aString[i++]; |
|
} else if (value <= 31) { |
|
token = CFFEncodingMap[value]; |
|
} else if (value < 247) { |
|
token = parseInt(value) - 139; |
|
} else if (value < 251) { |
|
token = ((value - 247) * 256) + aString[i++] + 108; |
|
} else if (value < 255) { |
|
token = -((value - 251) * 256) - aString[i++] - 108; |
|
} else {// value == 255 |
|
token = aString[i++] << 24 | aString[i++] << 16 | |
|
aString[i++] << 8 | aString[i]; |
|
} |
|
|
|
charstringTokens.push(token); |
|
} |
|
|
|
return charstringTokens; |
|
}; |
|
|
|
|
|
/** |
|
* Take a binary DICT Data as input and transform it into a human readable |
|
* form as specified by 'The Compact Font Format Specification', chapter 5. |
|
*/ |
|
function readFontDictData(aString, aMap) { |
|
var fontDictDataTokens = []; |
|
|
|
var count = aString.length; |
|
for (var i = 0; i < count; i) { |
|
var value = aString[i++]; |
|
var token = null; |
|
|
|
if (value == 12) { |
|
token = aMap[value][aString[i++]]; |
|
} else if (value == 28) { |
|
token = aString[i++] << 8 | aString[i++]; |
|
} else if (value == 29) { |
|
token = aString[i++] << 24 | |
|
aString[i++] << 16 | |
|
aString[i++] << 8 | |
|
aString[i++]; |
|
} else if (value == 30) { |
|
token = ""; |
|
var parsed = false; |
|
while (!parsed) { |
|
var byte = aString[i++]; |
|
|
|
var nibbles = [parseInt(byte / 16), parseInt(byte % 16)]; |
|
for (var j = 0; j < nibbles.length; j++) { |
|
var nibble = nibbles[j]; |
|
switch (nibble) { |
|
case 0xA: |
|
token += "."; |
|
break; |
|
case 0xB: |
|
token += "E"; |
|
break; |
|
case 0xC: |
|
token += "E-"; |
|
break; |
|
case 0xD: |
|
break; |
|
case 0xE: |
|
token += "-"; |
|
break; |
|
case 0xF: |
|
parsed = true; |
|
break; |
|
default: |
|
token += nibble; |
|
break; |
|
} |
|
} |
|
}; |
|
token = parseFloat(token); |
|
} else if (value <= 31) { |
|
token = aMap[value]; |
|
} else if (value <= 246) { |
|
token = parseInt(value) - 139; |
|
} else if (value <= 250) { |
|
token = ((value - 247) * 256) + aString[i++] + 108; |
|
} else if (value <= 254) { |
|
token = -((value - 251) * 256) - aString[i++] - 108; |
|
} else if (value == 255) { |
|
error("255 is not a valid DICT command"); |
|
} |
|
|
|
fontDictDataTokens.push(token); |
|
} |
|
|
|
return fontDictDataTokens; |
|
}; |
|
|
|
|
|
/** |
|
* Take a stream as input and return an array of objects. |
|
* In CFF an INDEX is a structure with the following format: |
|
* { |
|
* count: 2 bytes (Number of objects stored in INDEX), |
|
* offsize: 1 byte (Offset array element size), |
|
* offset: [count + 1] bytes (Offsets array), |
|
* data: - (Objects data) |
|
* } |
|
* |
|
* More explanation are given in the 'CFF Font Format Specification', |
|
* chapter 5. |
|
*/ |
|
function readFontIndexData(aStream, aIsByte) { |
|
var count = aStream.getByte() << 8 | aStream.getByte(); |
|
var offsize = aStream.getByte(); |
|
|
|
function getNextOffset() { |
|
switch (offsize) { |
|
case 0: |
|
return 0; |
|
case 1: |
|
return aStream.getByte(); |
|
case 2: |
|
return aStream.getByte() << 8 | aStream.getByte(); |
|
case 3: |
|
return aStream.getByte() << 16 | aStream.getByte() << 8 | |
|
aStream.getByte(); |
|
case 4: |
|
return aStream.getByte() << 24 | aStream.getByte() << 16 | |
|
aStream.getByte() << 8 | aStream.getByte(); |
|
} |
|
}; |
|
|
|
var offsets = []; |
|
for (var i = 0; i < count + 1; i++) |
|
offsets.push(getNextOffset()); |
|
|
|
log("Found " + count + " objects at offsets :" + offsets + " (offsize: " + offsize + ")"); |
|
|
|
// Now extract the objects |
|
var relativeOffset = aStream.pos; |
|
var objects = []; |
|
for (var i = 0; i < count; i++) { |
|
var offset = offsets[i]; |
|
aStream.pos = relativeOffset + offset - 1; |
|
|
|
var data = []; |
|
var length = offsets[i + 1] - 1; |
|
for (var j = offset - 1; j < length; j++) |
|
data.push(aIsByte ? aStream.getByte() : aStream.getChar()); |
|
objects.push(data); |
|
} |
|
|
|
return objects; |
|
}; |
|
|
|
var Type2Parser = function(aFilePath) { |
|
var font = new Dict(); |
|
|
|
// Turn on this flag for additional debugging logs |
|
var debug = true; |
|
|
|
function dump(aStr) { |
|
if (debug) |
|
log(aStr); |
|
}; |
|
|
|
function parseAsToken(aString, aMap) { |
|
var decoded = readFontDictData(aString, aMap); |
|
log(decoded); |
|
|
|
var stack = []; |
|
var count = decoded.length; |
|
for (var i = 0; i < count; i++) { |
|
var token = decoded[i]; |
|
if (IsNum(token)) { |
|
stack.push(token); |
|
} else { |
|
switch (token.operand) { |
|
case "SID": |
|
font.set(token.name, CFFStrings[stack.pop()]); |
|
break; |
|
case "number number": |
|
font.set(token.name, { |
|
offset: stack.pop(), |
|
size: stack.pop() |
|
}); |
|
break; |
|
case "boolean": |
|
font.set(token.name, stack.pop()); |
|
break; |
|
case "delta": |
|
font.set(token.name, stack.pop()); |
|
break; |
|
default: |
|
if (token.operand && token.operand.length) { |
|
var array = []; |
|
for (var j = 0; j < token.operand.length; j++) |
|
array.push(stack.pop()); |
|
font.set(token.name, array); |
|
} else { |
|
font.set(token.name, stack.pop()); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
this.parse = function(aStream) { |
|
font.set("major", aStream.getByte()); |
|
font.set("minor", aStream.getByte()); |
|
font.set("hdrSize", aStream.getByte()); |
|
font.set("offsize", aStream.getByte()); |
|
|
|
// Move the cursor after the header |
|
aStream.skip(font.get("hdrSize") - aStream.pos); |
|
|
|
// Read the NAME Index |
|
dump("Reading Index: Names"); |
|
font.set("Names", readFontIndexData(aStream)); |
|
|
|
// Read the Top Dict Index |
|
dump("Reading Index: TopDict"); |
|
var topDict = readFontIndexData(aStream, true); |
|
|
|
// Read the String Index |
|
dump("Reading Index: Strings"); |
|
var strings = readFontIndexData(aStream); |
|
|
|
// Fill up the Strings dictionary with the new unique strings |
|
for (var i = 0; i < strings.length; i++) |
|
CFFStrings.push(strings[i].join("")); |
|
|
|
// Parse the TopDict operator |
|
var objects = []; |
|
var count = topDict.length; |
|
for (var i = 0; i < count; i++) |
|
parseAsToken(topDict[i], CFFDictDataMap); |
|
|
|
// Read the Global Subr Index that comes just after the Strings Index |
|
// (cf. "The Compact Font Format Specification" Chapter 16) |
|
dump("Reading Global Subr Index"); |
|
var subrs = readFontIndexData(aStream); |
|
|
|
// Reading Private Dict |
|
var private = font.get("Private"); |
|
log("Reading Private Dict (offset: " + private.offset + " size: " + private.size + ")"); |
|
aStream.pos = private.offset; |
|
|
|
var privateDict = []; |
|
for (var i = 0; i < private.size; i++) |
|
privateDict.push(aStream.getByte()); |
|
parseAsToken(privateDict, CFFDictPrivateDataMap); |
|
|
|
for (var p in font.map) |
|
dump(p + "::" + font.get(p)); |
|
|
|
// Read CharStrings Index |
|
var charStringsOffset = font.get("CharStrings"); |
|
dump("Read CharStrings Index (offset: " + charStringsOffset + ")"); |
|
aStream.pos = charStringsOffset; |
|
var charStrings = readFontIndexData(aStream, true); |
|
|
|
|
|
var charsetEntry = font.get("charset"); |
|
if (charsetEntry == 0) { |
|
throw new Error("Need to support CFFISOAdobeCharset"); |
|
} else if (charsetEntry == 1) { |
|
throw new Error("Need to support CFFExpert"); |
|
} else if (charsetEntry == 2) { |
|
throw new Error("Need to support CFFExpertSubsetCharset"); |
|
} else { |
|
aStream.pos = charsetEntry; |
|
var charset = readCharset(aStream, charStrings); |
|
} |
|
|
|
} |
|
}; |
|
|
|
|
|
// XXX |
|
var xhr = new XMLHttpRequest(); |
|
xhr.open("GET", "titi.cff", false); |
|
xhr.mozResponseType = xhr.responseType = "arraybuffer"; |
|
xhr.expected = (document.URL.indexOf("file:") == 0) ? 0 : 200; |
|
xhr.send(null); |
|
var cffData = xhr.mozResponseArrayBuffer || xhr.mozResponse || |
|
xhr.responseArrayBuffer || xhr.response; |
|
var cff = new Type2Parser("titi.cff"); |
|
cff.parse(new Stream(cffData)); |
|
|
|
|