You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1138 lines
25 KiB
1138 lines
25 KiB
<script type="text/javascript"> |
|
|
|
var setlang = (function(){ |
|
var crc32 = (function() { |
|
|
|
var table = [], |
|
poly = 0xEDB88320; // reverse polynomial |
|
|
|
// build the table |
|
function makeTable() { |
|
var c, n, k; |
|
|
|
for (n = 0; n < 256; n += 1) { |
|
c = n; |
|
for (k = 0; k < 8; k += 1) { |
|
if (c & 1) { |
|
c = poly ^ (c >>> 1); |
|
} else { |
|
c = c >>> 1; |
|
} |
|
} |
|
table[n] = c >>> 0; |
|
} |
|
} |
|
|
|
function strToArr(str) { |
|
// sweet hack to turn string into a 'byte' array |
|
return Array.prototype.map.call(str, function (c) { |
|
return c.charCodeAt(0); |
|
}); |
|
} |
|
|
|
/* |
|
* Compute CRC of array directly. |
|
* |
|
* This is slower for repeated calls, so append mode is not supported. |
|
*/ |
|
function crcDirect(arr) { |
|
var crc = -1, // initial contents of LFBSR |
|
i, j, l, temp; |
|
|
|
for (i = 0, l = arr.length; i < l; i += 1) { |
|
temp = (crc ^ arr[i]) & 0xff; |
|
|
|
// read 8 bits one at a time |
|
for (j = 0; j < 8; j += 1) { |
|
if ((temp & 1) === 1) { |
|
temp = (temp >>> 1) ^ poly; |
|
} else { |
|
temp = (temp >>> 1); |
|
} |
|
} |
|
crc = (crc >>> 8) ^ temp; |
|
} |
|
|
|
// flip bits |
|
return crc ^ -1; |
|
} |
|
|
|
/* |
|
* Compute CRC with the help of a pre-calculated table. |
|
* |
|
* This supports append mode, if the second parameter is set. |
|
*/ |
|
function crcTable(arr, append) { |
|
var crc, i, l; |
|
|
|
// if we're in append mode, don't reset crc |
|
// if arr is null or undefined, reset table and return |
|
if (typeof crcTable.crc === 'undefined' || !append || !arr) { |
|
crcTable.crc = 0 ^ -1; |
|
|
|
if (!arr) { |
|
return; |
|
} |
|
} |
|
|
|
// store in temp variable for minor speed gain |
|
crc = crcTable.crc; |
|
|
|
for (i = 0, l = arr.length; i < l; i += 1) { |
|
crc = (crc >>> 8) ^ table[(crc ^ arr[i]) & 0xff]; |
|
} |
|
|
|
crcTable.crc = crc; |
|
|
|
return crc ^ -1; |
|
} |
|
|
|
// build the table |
|
// this isn't that costly, and most uses will be for table assisted mode |
|
makeTable(); |
|
|
|
var exports = function (val, direct) { |
|
var val = (typeof val === 'string') ? strToArr(val) : val, |
|
ret = direct ? crcDirect(val) : crcTable(val); |
|
|
|
// convert to 2's complement hex |
|
return (ret >>> 0).toString(16); |
|
}; |
|
exports.direct = crcDirect; |
|
exports.table = crcTable; |
|
|
|
return exports; |
|
})() |
|
/* |
|
* $Id: rawinflate.js,v 0.2 2009/03/01 18:32:24 dankogai Exp $ |
|
* |
|
* original: |
|
* http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt |
|
*/ |
|
|
|
/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp> |
|
* Version: 1.0.0.1 |
|
* LastModified: Dec 25 1999 |
|
*/ |
|
|
|
/* Interface: |
|
* data = inflate(src); |
|
*/ |
|
|
|
var inflate = (function () { |
|
/* constant parameters */ |
|
var WSIZE = 32768, // Sliding Window size |
|
STORED_BLOCK = 0, |
|
STATIC_TREES = 1, |
|
DYN_TREES = 2, |
|
|
|
/* for inflate */ |
|
lbits = 9, // bits in base literal/length lookup table |
|
dbits = 6, // bits in base distance lookup table |
|
|
|
/* variables (inflate) */ |
|
slide, |
|
wp, // current position in slide |
|
fixed_tl = null, // inflate static |
|
fixed_td, // inflate static |
|
fixed_bl, // inflate static |
|
fixed_bd, // inflate static |
|
bit_buf, // bit buffer |
|
bit_len, // bits in bit buffer |
|
method, |
|
eof, |
|
copy_leng, |
|
copy_dist, |
|
tl, // literal length decoder table |
|
td, // literal distance decoder table |
|
bl, // number of bits decoded by tl |
|
bd, // number of bits decoded by td |
|
|
|
inflate_data, |
|
inflate_pos, |
|
|
|
/* constant tables (inflate) */ |
|
MASK_BITS = [ |
|
0x0000, |
|
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
|
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
|
], |
|
// Tables for deflate from PKZIP's appnote.txt. |
|
// Copy lengths for literal codes 257..285 |
|
cplens = [ |
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
|
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 |
|
], |
|
/* note: see note #13 above about the 258 in this list. */ |
|
// Extra bits for literal codes 257..285 |
|
cplext = [ |
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
|
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 // 99==invalid |
|
], |
|
// Copy offsets for distance codes 0..29 |
|
cpdist = [ |
|
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
|
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
|
8193, 12289, 16385, 24577 |
|
], |
|
// Extra bits for distance codes |
|
cpdext = [ |
|
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
|
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
|
12, 12, 13, 13 |
|
], |
|
// Order of the bit length code lengths |
|
border = [ |
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 |
|
]; |
|
/* objects (inflate) */ |
|
|
|
function HuftList() { |
|
this.next = null; |
|
this.list = null; |
|
} |
|
|
|
function HuftNode() { |
|
this.e = 0; // number of extra bits or operation |
|
this.b = 0; // number of bits in this code or subcode |
|
|
|
// union |
|
this.n = 0; // literal, length base, or distance base |
|
this.t = null; // (HuftNode) pointer to next level of table |
|
} |
|
|
|
/* |
|
* @param b- code lengths in bits (all assumed <= BMAX) |
|
* @param n- number of codes (assumed <= N_MAX) |
|
* @param s- number of simple-valued codes (0..s-1) |
|
* @param d- list of base values for non-simple codes |
|
* @param e- list of extra bits for non-simple codes |
|
* @param mm- maximum lookup bits |
|
*/ |
|
function HuftBuild(b, n, s, d, e, mm) { |
|
this.BMAX = 16; // maximum bit length of any code |
|
this.N_MAX = 288; // maximum number of codes in any set |
|
this.status = 0; // 0: success, 1: incomplete table, 2: bad input |
|
this.root = null; // (HuftList) starting table |
|
this.m = 0; // maximum lookup bits, returns actual |
|
|
|
/* Given a list of code lengths and a maximum table size, make a set of |
|
tables to decode that set of codes. Return zero on success, one if |
|
the given code set is incomplete (the tables are still built in this |
|
case), two if the input is invalid (all zero length codes or an |
|
oversubscribed set of lengths), and three if not enough memory. |
|
The code with value 256 is special, and the tables are constructed |
|
so that no bits beyond that code are fetched when that code is |
|
decoded. */ |
|
var a; // counter for codes of length k |
|
var c = []; |
|
var el; // length of EOB code (value 256) |
|
var f; // i repeats in table every f entries |
|
var g; // maximum code length |
|
var h; // table level |
|
var i; // counter, current code |
|
var j; // counter |
|
var k; // number of bits in current code |
|
var lx = []; |
|
var p; // pointer into c[], b[], or v[] |
|
var pidx; // index of p |
|
var q; // (HuftNode) points to current table |
|
var r = new HuftNode(); // table entry for structure assignment |
|
var u = []; |
|
var v = []; |
|
var w; |
|
var x = []; |
|
var xp; // pointer into x or c |
|
var y; // number of dummy codes added |
|
var z; // number of entries in current table |
|
var o; |
|
var tail; // (HuftList) |
|
|
|
tail = this.root = null; |
|
|
|
// bit length count table |
|
for (i = 0; i < this.BMAX + 1; i++) { |
|
c[i] = 0; |
|
} |
|
// stack of bits per table |
|
for (i = 0; i < this.BMAX + 1; i++) { |
|
lx[i] = 0; |
|
} |
|
// HuftNode[BMAX][] table stack |
|
for (i = 0; i < this.BMAX; i++) { |
|
u[i] = null; |
|
} |
|
// values in order of bit length |
|
for (i = 0; i < this.N_MAX; i++) { |
|
v[i] = 0; |
|
} |
|
// bit offsets, then code stack |
|
for (i = 0; i < this.BMAX + 1; i++) { |
|
x[i] = 0; |
|
} |
|
|
|
// Generate counts for each bit length |
|
el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any |
|
p = b; pidx = 0; |
|
i = n; |
|
do { |
|
c[p[pidx]]++; // assume all entries <= BMAX |
|
pidx++; |
|
} while (--i > 0); |
|
if (c[0] === n) { // null input--all zero length codes |
|
this.root = null; |
|
this.m = 0; |
|
this.status = 0; |
|
return; |
|
} |
|
|
|
// Find minimum and maximum length, bound *m by those |
|
for (j = 1; j <= this.BMAX; j++) { |
|
if (c[j] !== 0) { |
|
break; |
|
} |
|
} |
|
k = j; // minimum code length |
|
if (mm < j) { |
|
mm = j; |
|
} |
|
for (i = this.BMAX; i !== 0; i--) { |
|
if (c[i] !== 0) { |
|
break; |
|
} |
|
} |
|
g = i; // maximum code length |
|
if (mm > i) { |
|
mm = i; |
|
} |
|
|
|
// Adjust last length count to fill out codes, if needed |
|
for (y = 1 << j; j < i; j++, y <<= 1) { |
|
if ((y -= c[j]) < 0) { |
|
this.status = 2; // bad input: more codes than bits |
|
this.m = mm; |
|
return; |
|
} |
|
} |
|
if ((y -= c[i]) < 0) { |
|
this.status = 2; |
|
this.m = mm; |
|
return; |
|
} |
|
c[i] += y; |
|
|
|
// Generate starting offsets into the value table for each length |
|
x[1] = j = 0; |
|
p = c; |
|
pidx = 1; |
|
xp = 2; |
|
while (--i > 0) { // note that i == g from above |
|
x[xp++] = (j += p[pidx++]); |
|
} |
|
|
|
// Make a table of values in order of bit lengths |
|
p = b; pidx = 0; |
|
i = 0; |
|
do { |
|
if ((j = p[pidx++]) !== 0) { |
|
v[x[j]++] = i; |
|
} |
|
} while (++i < n); |
|
n = x[g]; // set n to length of v |
|
|
|
// Generate the Huffman codes and for each, make the table entries |
|
x[0] = i = 0; // first Huffman code is zero |
|
p = v; pidx = 0; // grab values in bit order |
|
h = -1; // no tables yet--level -1 |
|
w = lx[0] = 0; // no bits decoded yet |
|
q = null; // ditto |
|
z = 0; // ditto |
|
|
|
// go through the bit lengths (k already is bits in shortest code) |
|
for (null; k <= g; k++) { |
|
a = c[k]; |
|
while (a-- > 0) { |
|
// here i is the Huffman code of length k bits for value p[pidx] |
|
// make tables up to required level |
|
while (k > w + lx[1 + h]) { |
|
w += lx[1 + h]; // add bits already decoded |
|
h++; |
|
|
|
// compute minimum size table less than or equal to *m bits |
|
z = (z = g - w) > mm ? mm : z; // upper limit |
|
if ((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table |
|
// too few codes for k-w bit table |
|
f -= a + 1; // deduct codes from patterns left |
|
xp = k; |
|
while (++j < z) { // try smaller tables up to z bits |
|
if ((f <<= 1) <= c[++xp]) { |
|
break; // enough codes to use up j bits |
|
} |
|
f -= c[xp]; // else deduct codes from patterns |
|
} |
|
} |
|
if (w + j > el && w < el) { |
|
j = el - w; // make EOB code end at table |
|
} |
|
z = 1 << j; // table entries for j-bit table |
|
lx[1 + h] = j; // set table size in stack |
|
|
|
// allocate and link in new table |
|
q = []; |
|
for (o = 0; o < z; o++) { |
|
q[o] = new HuftNode(); |
|
} |
|
|
|
if (!tail) { |
|
tail = this.root = new HuftList(); |
|
} else { |
|
tail = tail.next = new HuftList(); |
|
} |
|
tail.next = null; |
|
tail.list = q; |
|
u[h] = q; // table starts after link |
|
|
|
/* connect to last table, if there is one */ |
|
if (h > 0) { |
|
x[h] = i; // save pattern for backing up |
|
r.b = lx[h]; // bits to dump before this table |
|
r.e = 16 + j; // bits in this table |
|
r.t = q; // pointer to this table |
|
j = (i & ((1 << w) - 1)) >> (w - lx[h]); |
|
u[h - 1][j].e = r.e; |
|
u[h - 1][j].b = r.b; |
|
u[h - 1][j].n = r.n; |
|
u[h - 1][j].t = r.t; |
|
} |
|
} |
|
|
|
// set up table entry in r |
|
r.b = k - w; |
|
if (pidx >= n) { |
|
r.e = 99; // out of values--invalid code |
|
} else if (p[pidx] < s) { |
|
r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code |
|
r.n = p[pidx++]; // simple code is just the value |
|
} else { |
|
r.e = e[p[pidx] - s]; // non-simple--look up in lists |
|
r.n = d[p[pidx++] - s]; |
|
} |
|
|
|
// fill code-like entries with r // |
|
f = 1 << (k - w); |
|
for (j = i >> w; j < z; j += f) { |
|
q[j].e = r.e; |
|
q[j].b = r.b; |
|
q[j].n = r.n; |
|
q[j].t = r.t; |
|
} |
|
|
|
// backwards increment the k-bit code i |
|
for (j = 1 << (k - 1); (i & j) !== 0; j >>= 1) { |
|
i ^= j; |
|
} |
|
i ^= j; |
|
|
|
// backup over finished tables |
|
while ((i & ((1 << w) - 1)) !== x[h]) { |
|
w -= lx[h]; // don't need to update q |
|
h--; |
|
} |
|
} |
|
} |
|
|
|
/* return actual size of base table */ |
|
this.m = lx[1]; |
|
|
|
/* Return true (1) if we were given an incomplete table */ |
|
this.status = ((y !== 0 && g !== 1) ? 1 : 0); |
|
} |
|
|
|
|
|
/* routines (inflate) */ |
|
|
|
function GET_BYTE() { |
|
if (inflate_data.length === inflate_pos) { |
|
return -1; |
|
} |
|
return inflate_data[inflate_pos++] & 0xff; |
|
} |
|
|
|
function NEEDBITS(n) { |
|
while (bit_len < n) { |
|
bit_buf |= GET_BYTE() << bit_len; |
|
bit_len += 8; |
|
} |
|
} |
|
|
|
function GETBITS(n) { |
|
return bit_buf & MASK_BITS[n]; |
|
} |
|
|
|
function DUMPBITS(n) { |
|
bit_buf >>= n; |
|
bit_len -= n; |
|
} |
|
|
|
function inflate_codes(buff, off, size) { |
|
// inflate (decompress) the codes in a deflated (compressed) block. |
|
// Return an error code or zero if it all goes ok. |
|
var e; // table entry flag/number of extra bits |
|
var t; // (HuftNode) pointer to table entry |
|
var n; |
|
|
|
if (size === 0) { |
|
return 0; |
|
} |
|
|
|
// inflate the coded data |
|
n = 0; |
|
for (;;) { // do until end of block |
|
NEEDBITS(bl); |
|
t = tl.list[GETBITS(bl)]; |
|
e = t.e; |
|
while (e > 16) { |
|
if (e === 99) { |
|
return -1; |
|
} |
|
DUMPBITS(t.b); |
|
e -= 16; |
|
NEEDBITS(e); |
|
t = t.t[GETBITS(e)]; |
|
e = t.e; |
|
} |
|
DUMPBITS(t.b); |
|
|
|
if (e === 16) { // then it's a literal |
|
wp &= WSIZE - 1; |
|
buff[off + n++] = slide[wp++] = t.n; |
|
if (n === size) { |
|
return size; |
|
} |
|
continue; |
|
} |
|
|
|
// exit if end of block |
|
if (e === 15) { |
|
break; |
|
} |
|
|
|
// it's an EOB or a length |
|
|
|
// get length of block to copy |
|
NEEDBITS(e); |
|
copy_leng = t.n + GETBITS(e); |
|
DUMPBITS(e); |
|
|
|
// decode distance of block to copy |
|
NEEDBITS(bd); |
|
t = td.list[GETBITS(bd)]; |
|
e = t.e; |
|
|
|
while (e > 16) { |
|
if (e === 99) { |
|
return -1; |
|
} |
|
DUMPBITS(t.b); |
|
e -= 16; |
|
NEEDBITS(e); |
|
t = t.t[GETBITS(e)]; |
|
e = t.e; |
|
} |
|
DUMPBITS(t.b); |
|
NEEDBITS(e); |
|
copy_dist = wp - t.n - GETBITS(e); |
|
DUMPBITS(e); |
|
|
|
// do the copy |
|
while (copy_leng > 0 && n < size) { |
|
copy_leng--; |
|
copy_dist &= WSIZE - 1; |
|
wp &= WSIZE - 1; |
|
buff[off + n++] = slide[wp++] = slide[copy_dist++]; |
|
} |
|
|
|
if (n === size) { |
|
return size; |
|
} |
|
} |
|
|
|
method = -1; // done |
|
return n; |
|
} |
|
|
|
function inflate_stored(buff, off, size) { |
|
/* "decompress" an inflated type 0 (stored) block. */ |
|
var n; |
|
|
|
// go to byte boundary |
|
n = bit_len & 7; |
|
DUMPBITS(n); |
|
|
|
// get the length and its complement |
|
NEEDBITS(16); |
|
n = GETBITS(16); |
|
DUMPBITS(16); |
|
NEEDBITS(16); |
|
if (n !== ((~bit_buf) & 0xffff)) { |
|
return -1; // error in compressed data |
|
} |
|
DUMPBITS(16); |
|
|
|
// read and output the compressed data |
|
copy_leng = n; |
|
|
|
n = 0; |
|
while (copy_leng > 0 && n < size) { |
|
copy_leng--; |
|
wp &= WSIZE - 1; |
|
NEEDBITS(8); |
|
buff[off + n++] = slide[wp++] = GETBITS(8); |
|
DUMPBITS(8); |
|
} |
|
|
|
if (copy_leng === 0) { |
|
method = -1; // done |
|
} |
|
return n; |
|
} |
|
|
|
function inflate_fixed(buff, off, size) { |
|
// decompress an inflated type 1 (fixed Huffman codes) block. We should |
|
// either replace this with a custom decoder, or at least precompute the |
|
// Huffman tables. |
|
|
|
// if first time, set up tables for fixed blocks |
|
if (!fixed_tl) { |
|
var i; // temporary variable |
|
var l = []; // 288 length list for huft_build (initialized below) |
|
var h; // HuftBuild |
|
|
|
// literal table |
|
for (i = 0; i < 144; i++) { |
|
l[i] = 8; |
|
} |
|
for (null; i < 256; i++) { |
|
l[i] = 9; |
|
} |
|
for (null; i < 280; i++) { |
|
l[i] = 7; |
|
} |
|
for (null; i < 288; i++) { // make a complete, but wrong code set |
|
l[i] = 8; |
|
} |
|
fixed_bl = 7; |
|
|
|
h = new HuftBuild(l, 288, 257, cplens, cplext, fixed_bl); |
|
if (h.status !== 0) { |
|
console.error("HufBuild error: " + h.status); |
|
return -1; |
|
} |
|
fixed_tl = h.root; |
|
fixed_bl = h.m; |
|
|
|
// distance table |
|
for (i = 0; i < 30; i++) { // make an incomplete code set |
|
l[i] = 5; |
|
} |
|
fixed_bd = 5; |
|
|
|
h = new HuftBuild(l, 30, 0, cpdist, cpdext, fixed_bd); |
|
if (h.status > 1) { |
|
fixed_tl = null; |
|
console.error("HufBuild error: " + h.status); |
|
return -1; |
|
} |
|
fixed_td = h.root; |
|
fixed_bd = h.m; |
|
} |
|
|
|
tl = fixed_tl; |
|
td = fixed_td; |
|
bl = fixed_bl; |
|
bd = fixed_bd; |
|
return inflate_codes(buff, off, size); |
|
} |
|
|
|
function inflate_dynamic(buff, off, size) { |
|
// decompress an inflated type 2 (dynamic Huffman codes) block. |
|
var i; // temporary variables |
|
var j; |
|
var l; // last length |
|
var n; // number of lengths to get |
|
var t; // (HuftNode) literal/length code table |
|
var nb; // number of bit length codes |
|
var nl; // number of literal/length codes |
|
var nd; // number of distance codes |
|
var ll = []; |
|
var h; // (HuftBuild) |
|
|
|
// literal/length and distance code lengths |
|
for (i = 0; i < 286 + 30; i++) { |
|
ll[i] = 0; |
|
} |
|
|
|
// read in table lengths |
|
NEEDBITS(5); |
|
nl = 257 + GETBITS(5); // number of literal/length codes |
|
DUMPBITS(5); |
|
NEEDBITS(5); |
|
nd = 1 + GETBITS(5); // number of distance codes |
|
DUMPBITS(5); |
|
NEEDBITS(4); |
|
nb = 4 + GETBITS(4); // number of bit length codes |
|
DUMPBITS(4); |
|
if (nl > 286 || nd > 30) { |
|
return -1; // bad lengths |
|
} |
|
|
|
// read in bit-length-code lengths |
|
for (j = 0; j < nb; j++) { |
|
NEEDBITS(3); |
|
ll[border[j]] = GETBITS(3); |
|
DUMPBITS(3); |
|
} |
|
for (null; j < 19; j++) { |
|
ll[border[j]] = 0; |
|
} |
|
|
|
// build decoding table for trees--single level, 7 bit lookup |
|
bl = 7; |
|
h = new HuftBuild(ll, 19, 19, null, null, bl); |
|
if (h.status !== 0) { |
|
return -1; // incomplete code set |
|
} |
|
|
|
tl = h.root; |
|
bl = h.m; |
|
|
|
// read in literal and distance code lengths |
|
n = nl + nd; |
|
i = l = 0; |
|
while (i < n) { |
|
NEEDBITS(bl); |
|
t = tl.list[GETBITS(bl)]; |
|
j = t.b; |
|
DUMPBITS(j); |
|
j = t.n; |
|
if (j < 16) { // length of code in bits (0..15) |
|
ll[i++] = l = j; // save last length in l |
|
} else if (j === 16) { // repeat last length 3 to 6 times |
|
NEEDBITS(2); |
|
j = 3 + GETBITS(2); |
|
DUMPBITS(2); |
|
if (i + j > n) { |
|
return -1; |
|
} |
|
while (j-- > 0) { |
|
ll[i++] = l; |
|
} |
|
} else if (j === 17) { // 3 to 10 zero length codes |
|
NEEDBITS(3); |
|
j = 3 + GETBITS(3); |
|
DUMPBITS(3); |
|
if (i + j > n) { |
|
return -1; |
|
} |
|
while (j-- > 0) { |
|
ll[i++] = 0; |
|
} |
|
l = 0; |
|
} else { // j === 18: 11 to 138 zero length codes |
|
NEEDBITS(7); |
|
j = 11 + GETBITS(7); |
|
DUMPBITS(7); |
|
if (i + j > n) { |
|
return -1; |
|
} |
|
while (j-- > 0) { |
|
ll[i++] = 0; |
|
} |
|
l = 0; |
|
} |
|
} |
|
|
|
// build the decoding tables for literal/length and distance codes |
|
bl = lbits; |
|
h = new HuftBuild(ll, nl, 257, cplens, cplext, bl); |
|
if (bl === 0) { // no literals or lengths |
|
h.status = 1; |
|
} |
|
if (h.status !== 0) { |
|
if (h.status !== 1) { |
|
return -1; // incomplete code set |
|
} |
|
// **incomplete literal tree** |
|
} |
|
tl = h.root; |
|
bl = h.m; |
|
|
|
for (i = 0; i < nd; i++) { |
|
ll[i] = ll[i + nl]; |
|
} |
|
bd = dbits; |
|
h = new HuftBuild(ll, nd, 0, cpdist, cpdext, bd); |
|
td = h.root; |
|
bd = h.m; |
|
|
|
if (bd === 0 && nl > 257) { // lengths but no distances |
|
// **incomplete distance tree** |
|
return -1; |
|
} |
|
/* |
|
if (h.status === 1) { |
|
// **incomplete distance tree** |
|
} |
|
*/ |
|
if (h.status !== 0) { |
|
return -1; |
|
} |
|
|
|
// decompress until an end-of-block code |
|
return inflate_codes(buff, off, size); |
|
} |
|
|
|
function inflate_start() { |
|
if (!slide) { |
|
slide = []; // new Array(2 * WSIZE); // slide.length is never called |
|
} |
|
wp = 0; |
|
bit_buf = 0; |
|
bit_len = 0; |
|
method = -1; |
|
eof = false; |
|
copy_leng = copy_dist = 0; |
|
tl = null; |
|
} |
|
|
|
function inflate_internal(buff, off, size) { |
|
// decompress an inflated entry |
|
var n, i; |
|
|
|
n = 0; |
|
while (n < size) { |
|
if (eof && method === -1) { |
|
return n; |
|
} |
|
|
|
if (copy_leng > 0) { |
|
if (method !== STORED_BLOCK) { |
|
// STATIC_TREES or DYN_TREES |
|
while (copy_leng > 0 && n < size) { |
|
copy_leng--; |
|
copy_dist &= WSIZE - 1; |
|
wp &= WSIZE - 1; |
|
buff[off + n++] = slide[wp++] = slide[copy_dist++]; |
|
} |
|
} else { |
|
while (copy_leng > 0 && n < size) { |
|
copy_leng--; |
|
wp &= WSIZE - 1; |
|
NEEDBITS(8); |
|
buff[off + n++] = slide[wp++] = GETBITS(8); |
|
DUMPBITS(8); |
|
} |
|
if (copy_leng === 0) { |
|
method = -1; // done |
|
} |
|
} |
|
if (n === size) { |
|
return n; |
|
} |
|
} |
|
|
|
if (method === -1) { |
|
if (eof) { |
|
break; |
|
} |
|
|
|
// read in last block bit |
|
NEEDBITS(1); |
|
if (GETBITS(1) !== 0) { |
|
eof = true; |
|
} |
|
DUMPBITS(1); |
|
|
|
// read in block type |
|
NEEDBITS(2); |
|
method = GETBITS(2); |
|
DUMPBITS(2); |
|
tl = null; |
|
copy_leng = 0; |
|
} |
|
|
|
switch (method) { |
|
case STORED_BLOCK: |
|
i = inflate_stored(buff, off + n, size - n); |
|
break; |
|
|
|
case STATIC_TREES: |
|
if (tl) { |
|
i = inflate_codes(buff, off + n, size - n); |
|
} else { |
|
i = inflate_fixed(buff, off + n, size - n); |
|
} |
|
break; |
|
|
|
case DYN_TREES: |
|
if (tl) { |
|
i = inflate_codes(buff, off + n, size - n); |
|
} else { |
|
i = inflate_dynamic(buff, off + n, size - n); |
|
} |
|
break; |
|
|
|
default: // error |
|
i = -1; |
|
break; |
|
} |
|
|
|
if (i === -1) { |
|
if (eof) { |
|
return 0; |
|
} |
|
return -1; |
|
} |
|
n += i; |
|
} |
|
return n; |
|
} |
|
|
|
function inflate(arr) { |
|
var buff = [], i; |
|
|
|
inflate_start(); |
|
inflate_data = arr; |
|
inflate_pos = 0; |
|
|
|
do { |
|
i = inflate_internal(buff, buff.length, 1024); |
|
} while (i > 0); |
|
inflate_data = null; // G.C. |
|
return buff; |
|
} |
|
|
|
return inflate |
|
}()); |
|
|
|
|
|
// magic numbers marking this file as GZIP |
|
var ID1 = 0x1F, |
|
ID2 = 0x8B, |
|
compressionMethods = { |
|
'deflate': 8 |
|
}, |
|
possibleFlags = { |
|
'FTEXT': 0x01, |
|
'FHCRC': 0x02, |
|
'FEXTRA': 0x04, |
|
'FNAME': 0x08, |
|
'FCOMMENT': 0x10 |
|
}, |
|
osMap = { |
|
'fat': 0, // FAT file system (DOS, OS/2, NT) + PKZIPW 2.50 VFAT, NTFS |
|
'amiga': 1, // Amiga |
|
'vmz': 2, // VMS (VAX or Alpha AXP) |
|
'unix': 3, // Unix |
|
'vm/cms': 4, // VM/CMS |
|
'atari': 5, // Atari |
|
'hpfs': 6, // HPFS file system (OS/2, NT 3.x) |
|
'macintosh': 7, // Macintosh |
|
'z-system': 8, // Z-System |
|
'cplm': 9, // CP/M |
|
'tops-20': 10, // TOPS-20 |
|
'ntfs': 11, // NTFS file system (NT) |
|
'qdos': 12, // SMS/QDOS |
|
'acorn': 13, // Acorn RISC OS |
|
'vfat': 14, // VFAT file system (Win95, NT) |
|
'vms': 15, // MVS (code also taken for PRIMOS) |
|
'beos': 16, // BeOS (BeBox or PowerMac) |
|
'tandem': 17, // Tandem/NSK |
|
'theos': 18 // THEOS |
|
}, |
|
os = 'unix', |
|
DEFAULT_LEVEL = 6; |
|
|
|
function putByte(n, arr) { |
|
arr.push(n & 0xFF); |
|
} |
|
|
|
// LSB first |
|
function putShort(n, arr) { |
|
arr.push(n & 0xFF); |
|
arr.push(n >>> 8); |
|
} |
|
|
|
// LSB first |
|
function putLong(n, arr) { |
|
putShort(n & 0xffff, arr); |
|
putShort(n >>> 16, arr); |
|
} |
|
|
|
function putString(s, arr) { |
|
var i, len = s.length; |
|
for (i = 0; i < len; i += 1) { |
|
putByte(s.charCodeAt(i), arr); |
|
} |
|
} |
|
|
|
function readByte(arr) { |
|
return arr.shift(); |
|
} |
|
|
|
function readShort(arr) { |
|
return arr.shift() | (arr.shift() << 8); |
|
} |
|
|
|
function readLong(arr) { |
|
var n1 = readShort(arr), |
|
n2 = readShort(arr); |
|
|
|
// JavaScript can't handle bits in the position 32 |
|
// we'll emulate this by removing the left-most bit (if it exists) |
|
// and add it back in via multiplication, which does work |
|
if (n2 > 32768) { |
|
n2 -= 32768; |
|
|
|
return ((n2 << 16) | n1) + 32768 * Math.pow(2, 16); |
|
} |
|
|
|
return (n2 << 16) | n1; |
|
} |
|
|
|
function readString(arr) { |
|
var charArr = []; |
|
|
|
// turn all bytes into chars until the terminating null |
|
while (arr[0] !== 0) { |
|
charArr.push(String.fromCharCode(arr.shift())); |
|
} |
|
|
|
// throw away terminating null |
|
arr.shift(); |
|
|
|
// join all characters into a cohesive string |
|
return charArr.join(''); |
|
} |
|
|
|
/* |
|
* Reads n number of bytes and return as an array. |
|
* |
|
* @param arr- Array of bytes to read from |
|
* @param n- Number of bytes to read |
|
*/ |
|
function readBytes(arr, n) { |
|
var i, ret = []; |
|
for (i = 0; i < n; i += 1) { |
|
ret.push(arr.shift()); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
function unzip(data, options) { |
|
// start with a copy of the array |
|
var arr = Array.prototype.slice.call(data, 0), |
|
t, |
|
compressionMethod, |
|
flags, |
|
mtime, |
|
xFlags, |
|
key, |
|
os, |
|
crc, |
|
size, |
|
res; |
|
|
|
// check the first two bytes for the magic numbers |
|
if (readByte(arr) !== ID1 || readByte(arr) !== ID2) { |
|
throw 'Not a GZIP file'; |
|
} |
|
|
|
t = readByte(arr); |
|
t = Object.keys(compressionMethods).some(function (key) { |
|
compressionMethod = key; |
|
return compressionMethods[key] === t; |
|
}); |
|
|
|
if (!t) { |
|
throw 'Unsupported compression method'; |
|
} |
|
|
|
flags = readByte(arr); |
|
mtime = readLong(arr); |
|
xFlags = readByte(arr); |
|
t = readByte(arr); |
|
Object.keys(osMap).some(function (key) { |
|
if (osMap[key] === t) { |
|
os = key; |
|
return true; |
|
} |
|
}); |
|
|
|
// just throw away the bytes for now |
|
if (flags & possibleFlags['FEXTRA']) { |
|
t = readShort(arr); |
|
readBytes(arr, t); |
|
} |
|
|
|
// just throw away for now |
|
if (flags & possibleFlags['FNAME']) { |
|
readString(arr); |
|
} |
|
|
|
// just throw away for now |
|
if (flags & possibleFlags['FCOMMENT']) { |
|
readString(arr); |
|
} |
|
|
|
// just throw away for now |
|
if (flags & possibleFlags['FHCRC']) { |
|
readShort(arr); |
|
} |
|
|
|
if (compressionMethod === 'deflate') { |
|
// give deflate everything but the last 8 bytes |
|
// the last 8 bytes are for the CRC32 checksum and filesize |
|
res = inflate(arr.splice(0, arr.length - 8)); |
|
} |
|
|
|
if (flags & possibleFlags['FTEXT']) { |
|
res = Array.prototype.map.call(res, function (byte) { |
|
return String.fromCharCode(byte); |
|
}).join(''); |
|
} |
|
|
|
crc = readLong(arr); |
|
if (crc !== parseInt(crc32(res), 16)) { |
|
throw 'Checksum does not match'; |
|
} |
|
|
|
size = readLong(arr); |
|
if (size !== res.length) { |
|
throw 'Size of decompressed file not correct'; |
|
} |
|
|
|
return res; |
|
} |
|
|
|
// lang ='eng' |
|
return (function(lang){ |
|
var xhr = new XMLHttpRequest(); |
|
xhr.open('GET', 'https://cdn.rawgit.com/naptha/tessdata/gh-pages/3.02/'+lang+'.traineddata.gz', true); |
|
xhr.responseType = 'arraybuffer'; |
|
xhr.onerror = function(){ cb(xhr, null) } |
|
xhr.onload = function(){ |
|
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { |
|
var arr = new Uint8Array(xhr.response) |
|
console.log(arr.length) |
|
window.result = new Uint8Array(unzip(arr)) |
|
console.log(result.length) |
|
} else cb(xhr, null); |
|
} |
|
xhr.send(null) |
|
}) |
|
})() |
|
|
|
setlang('eng') |
|
</script> |